This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbie2g
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
This version of csbie avoids a disjointness condition on x , A and
x , D by substituting twice. (Contributed by Mario Carneiro , 11-Nov-2016)
Ref
Expression
Hypotheses
csbie2g.1
⊢ x = y → B = C
csbie2g.2
⊢ y = A → C = D
Assertion
csbie2g
⊢ A ∈ V → ⦋ A / x ⦌ B = D
Proof
Step
Hyp
Ref
Expression
1
csbie2g.1
⊢ x = y → B = C
2
csbie2g.2
⊢ y = A → C = D
3
df-csb
⊢ ⦋ A / x ⦌ B = z | [ ˙ A / x ] ˙ z ∈ B
4
1
eleq2d
⊢ x = y → z ∈ B ↔ z ∈ C
5
2
eleq2d
⊢ y = A → z ∈ C ↔ z ∈ D
6
4 5
sbcie2g
⊢ A ∈ V → [ ˙ A / x ] ˙ z ∈ B ↔ z ∈ D
7
6
eqabcdv
⊢ A ∈ V → z | [ ˙ A / x ] ˙ z ∈ B = D
8
3 7
eqtrid
⊢ A ∈ V → ⦋ A / x ⦌ B = D