This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem crctistrl

Description: A circuit is a trail. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021)

Ref Expression
Assertion crctistrl F Circuits G P F Trails G P

Proof

Step Hyp Ref Expression
1 crctprop F Circuits G P F Trails G P P 0 = P F
2 1 simpld F Circuits G P F Trails G P