This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cphngp

Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cphngp W CPreHil W NrmGrp

Proof

Step Hyp Ref Expression
1 cphnlm W CPreHil W NrmMod
2 nlmngp W NrmMod W NrmGrp
3 1 2 syl W CPreHil W NrmGrp