This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
cnvimamptfin
Metamath Proof Explorer
Description: A preimage of a mapping with a finite domain under any class is finite.
In contrast to fisuppfi , the range of the mapping needs not to be
known. (Contributed by AV , 21-Dec-2018)
Ref
Expression
Hypothesis
cnvimamptfin.n
⊢ φ → N ∈ Fin
Assertion
cnvimamptfin
⊢ φ → p ∈ N ⟼ X -1 Y ∈ Fin
Proof
Step
Hyp
Ref
Expression
1
cnvimamptfin.n
⊢ φ → N ∈ Fin
2
cnvimass
⊢ p ∈ N ⟼ X -1 Y ⊆ dom ⁡ p ∈ N ⟼ X
3
eqid
⊢ p ∈ N ⟼ X = p ∈ N ⟼ X
4
3
dmmptss
⊢ dom ⁡ p ∈ N ⟼ X ⊆ N
5
2 4
sstri
⊢ p ∈ N ⟼ X -1 Y ⊆ N
6
ssfi
⊢ N ∈ Fin ∧ p ∈ N ⟼ X -1 Y ⊆ N → p ∈ N ⟼ X -1 Y ∈ Fin
7
1 5 6
sylancl
⊢ φ → p ∈ N ⟼ X -1 Y ∈ Fin