This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Domain quotients
cnvepresdmqss
Metamath Proof Explorer
Description: The domain quotient binary relation of the restricted converse epsilon
relation is equivalent to the negated elementhood of the empty set in the
restriction. (Contributed by Peter Mazsa , 14-Aug-2021)
Ref
Expression
Assertion
cnvepresdmqss
⊢ A ∈ V → E -1 ↾ A DomainQss A ↔ ¬ ∅ ∈ A
Proof
Step
Hyp
Ref
Expression
1
cnvepresex
⊢ A ∈ V → E -1 ↾ A ∈ V
2
brdmqss
⊢ A ∈ V ∧ E -1 ↾ A ∈ V → E -1 ↾ A DomainQss A ↔ dom ⁡ E -1 ↾ A / E -1 ↾ A = A
3
1 2
mpdan
⊢ A ∈ V → E -1 ↾ A DomainQss A ↔ dom ⁡ E -1 ↾ A / E -1 ↾ A = A
4
n0el3
⊢ ¬ ∅ ∈ A ↔ dom ⁡ E -1 ↾ A / E -1 ↾ A = A
5
3 4
bitr4di
⊢ A ∈ V → E -1 ↾ A DomainQss A ↔ ¬ ∅ ∈ A