This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzcmnss.b | ||
| cntzcmnss.z | |||
| Assertion | cntzcmnss |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmnss.b | ||
| 2 | cntzcmnss.z | ||
| 3 | 1 2 | cntzcmn | |
| 4 | sseq2 | ||
| 5 | 4 | eqcoms | |
| 6 | 5 | biimpd | |
| 7 | 6 | adantld | |
| 8 | 3 7 | mpcom |