This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Adjoints (cont.)
cnlnadjlem1
Metamath Proof Explorer
Description: Lemma for cnlnadji (Theorem 3.10 of Beran p. 104: every continuous
linear operator has an adjoint). The value of the auxiliary functional
G . (Contributed by NM , 16-Feb-2006)
(New usage is discouraged.)
Ref
Expression
Hypotheses
cnlnadjlem.1
⊢ T ∈ LinOp
cnlnadjlem.2
⊢ T ∈ ContOp
cnlnadjlem.3
⊢ G = g ∈ ℋ ⟼ T ⁡ g ⋅ ih y
Assertion
cnlnadjlem1
⊢ A ∈ ℋ → G ⁡ A = T ⁡ A ⋅ ih y
Proof
Step
Hyp
Ref
Expression
1
cnlnadjlem.1
⊢ T ∈ LinOp
2
cnlnadjlem.2
⊢ T ∈ ContOp
3
cnlnadjlem.3
⊢ G = g ∈ ℋ ⟼ T ⁡ g ⋅ ih y
4
fveq2
⊢ g = A → T ⁡ g = T ⁡ A
5
4
oveq1d
⊢ g = A → T ⁡ g ⋅ ih y = T ⁡ A ⋅ ih y
6
ovex
⊢ T ⁡ A ⋅ ih y ∈ V
7
5 3 6
fvmpt
⊢ A ∈ ℋ → G ⁡ A = T ⁡ A ⋅ ih y