This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Adjoints (cont.)
cnlnadj
Metamath Proof Explorer
Description: Every continuous linear operator has an adjoint. Theorem 3.10 of
Beran p. 104. (Contributed by NM , 18-Feb-2006)
(New usage is discouraged.)
Ref
Expression
Assertion
cnlnadj
⊢ T ∈ LinOp ∩ ContOp → ∃ t ∈ LinOp ∩ ContOp ∀ x ∈ ℋ ∀ y ∈ ℋ T ⁡ x ⋅ ih y = x ⋅ ih t ⁡ y
Proof
Step
Hyp
Ref
Expression
1
cnlnadjeu
⊢ T ∈ LinOp ∩ ContOp → ∃! t ∈ LinOp ∩ ContOp ∀ x ∈ ℋ ∀ y ∈ ℋ T ⁡ x ⋅ ih y = x ⋅ ih t ⁡ y
2
reurex
⊢ ∃! t ∈ LinOp ∩ ContOp ∀ x ∈ ℋ ∀ y ∈ ℋ T ⁡ x ⋅ ih y = x ⋅ ih t ⁡ y → ∃ t ∈ LinOp ∩ ContOp ∀ x ∈ ℋ ∀ y ∈ ℋ T ⁡ x ⋅ ih y = x ⋅ ih t ⁡ y
3
1 2
syl
⊢ T ∈ LinOp ∩ ContOp → ∃ t ∈ LinOp ∩ ContOp ∀ x ∈ ℋ ∀ y ∈ ℋ T ⁡ x ⋅ ih y = x ⋅ ih t ⁡ y