This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cmnmndd

Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis cmnmndd.1 φ G CMnd
Assertion cmnmndd φ G Mnd

Proof

Step Hyp Ref Expression
1 cmnmndd.1 φ G CMnd
2 cmnmnd G CMnd G Mnd
3 1 2 syl φ G Mnd