This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
climcj
Metamath Proof Explorer
Description: Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of Gleason p. 172. (Contributed by NM , 7-Jun-2006) (Revised by Mario Carneiro , 9-Feb-2014)
Ref
Expression
Hypotheses
climcn1lem.1
⊢ Z = ℤ ≥ M
climcn1lem.2
⊢ φ → F ⇝ A
climcn1lem.4
⊢ φ → G ∈ W
climcn1lem.5
⊢ φ → M ∈ ℤ
climcn1lem.6
⊢ φ ∧ k ∈ Z → F ⁡ k ∈ ℂ
climcj.7
⊢ φ ∧ k ∈ Z → G ⁡ k = F ⁡ k ‾
Assertion
climcj
⊢ φ → G ⇝ A ‾
Proof
Step
Hyp
Ref
Expression
1
climcn1lem.1
⊢ Z = ℤ ≥ M
2
climcn1lem.2
⊢ φ → F ⇝ A
3
climcn1lem.4
⊢ φ → G ∈ W
4
climcn1lem.5
⊢ φ → M ∈ ℤ
5
climcn1lem.6
⊢ φ ∧ k ∈ Z → F ⁡ k ∈ ℂ
6
climcj.7
⊢ φ ∧ k ∈ Z → G ⁡ k = F ⁡ k ‾
7
cjf
⊢ * : ℂ ⟶ ℂ
8
cjcn2
⊢ A ∈ ℂ ∧ x ∈ ℝ + → ∃ y ∈ ℝ + ∀ z ∈ ℂ z − A < y → z ‾ − A ‾ < x
9
1 2 3 4 5 7 8 6
climcn1lem
⊢ φ → G ⇝ A ‾