This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cfilfil

Description: A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cfilfil D ∞Met X F CauFil D F Fil X

Proof

Step Hyp Ref Expression
1 iscfil D ∞Met X F CauFil D F Fil X x + y F D y × y 0 x
2 1 simprbda D ∞Met X F CauFil D F Fil X