This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations with singleton words
ccatws1len
Metamath Proof Explorer
Description: The length of the concatenation of a word with a singleton word.
(Contributed by Alexander van der Vekens , 22-Sep-2018) (Revised by AV , 4-Mar-2022)
Ref
Expression
Assertion
ccatws1len
⊢ W ∈ Word V → W ++ 〈“ X ”〉 = W + 1
Proof
Step
Hyp
Ref
Expression
1
s1cli
⊢ 〈“ X ”〉 ∈ Word V
2
ccatlen
⊢ W ∈ Word V ∧ 〈“ X ”〉 ∈ Word V → W ++ 〈“ X ”〉 = W + 〈“ X ”〉
3
1 2
mpan2
⊢ W ∈ Word V → W ++ 〈“ X ”〉 = W + 〈“ X ”〉
4
s1len
⊢ 〈“ X ”〉 = 1
5
4
oveq2i
⊢ W + 〈“ X ”〉 = W + 1
6
3 5
eqtrdi
⊢ W ∈ Word V → W ++ 〈“ X ”〉 = W + 1