This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ccase2

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses ccase2.1 φ ψ τ
ccase2.2 χ τ
ccase2.3 θ τ
Assertion ccase2 φ χ ψ θ τ

Proof

Step Hyp Ref Expression
1 ccase2.1 φ ψ τ
2 ccase2.2 χ τ
3 ccase2.3 θ τ
4 2 adantr χ ψ τ
5 3 adantl φ θ τ
6 3 adantl χ θ τ
7 1 4 5 6 ccase φ χ ψ θ τ