This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
cbvral3v
Metamath Proof Explorer
Description: Change bound variables of triple restricted universal quantification,
using implicit substitution. Usage of this theorem is discouraged
because it depends on ax-13 . Use the weaker cbvral3vw when
possible. (Contributed by NM , 10-May-2005)
(New usage is discouraged.)
Ref
Expression
Hypotheses
cbvral3v.1
⊢ x = w → φ ↔ χ
cbvral3v.2
⊢ y = v → χ ↔ θ
cbvral3v.3
⊢ z = u → θ ↔ ψ
Assertion
cbvral3v
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ
Proof
Step
Hyp
Ref
Expression
1
cbvral3v.1
⊢ x = w → φ ↔ χ
2
cbvral3v.2
⊢ y = v → χ ↔ θ
3
cbvral3v.3
⊢ z = u → θ ↔ ψ
4
1
2ralbidv
⊢ x = w → ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ y ∈ B ∀ z ∈ C χ
5
4
cbvralv
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ y ∈ B ∀ z ∈ C χ
6
2 3
cbvral2v
⊢ ∀ y ∈ B ∀ z ∈ C χ ↔ ∀ v ∈ B ∀ u ∈ C ψ
7
6
ralbii
⊢ ∀ w ∈ A ∀ y ∈ B ∀ z ∈ C χ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ
8
5 7
bitri
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ