This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-7 (Equality)
cbvex4vw
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvex4v with more disjoint variable conditions, which
requires fewer axioms. (Contributed by NM , 26-Jul-1995) Avoid
ax-13 . (Revised by GG , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvex4vw.1
⊢ x = v ∧ y = u → φ ↔ ψ
cbvex4vw.2
⊢ z = f ∧ w = g → ψ ↔ χ
Assertion
cbvex4vw
⊢ ∃ x ∃ y ∃ z ∃ w φ ↔ ∃ v ∃ u ∃ f ∃ g χ
Proof
Step
Hyp
Ref
Expression
1
cbvex4vw.1
⊢ x = v ∧ y = u → φ ↔ ψ
2
cbvex4vw.2
⊢ z = f ∧ w = g → ψ ↔ χ
3
1
2exbidv
⊢ x = v ∧ y = u → ∃ z ∃ w φ ↔ ∃ z ∃ w ψ
4
3
cbvex2vw
⊢ ∃ x ∃ y ∃ z ∃ w φ ↔ ∃ v ∃ u ∃ z ∃ w ψ
5
2
cbvex2vw
⊢ ∃ z ∃ w ψ ↔ ∃ f ∃ g χ
6
5
2exbii
⊢ ∃ v ∃ u ∃ z ∃ w ψ ↔ ∃ v ∃ u ∃ f ∃ g χ
7
4 6
bitri
⊢ ∃ x ∃ y ∃ z ∃ w φ ↔ ∃ v ∃ u ∃ f ∃ g χ