This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbvex2v
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvex2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 14-Sep-2003) (Revised by BJ , 16-Jun-2019)
Ref
Expression
Hypotheses
cbval2v.1
⊢ Ⅎ z φ
cbval2v.2
⊢ Ⅎ w φ
cbval2v.3
⊢ Ⅎ x ψ
cbval2v.4
⊢ Ⅎ y ψ
cbval2v.5
⊢ x = z ∧ y = w → φ ↔ ψ
Assertion
cbvex2v
⊢ ∃ x ∃ y φ ↔ ∃ z ∃ w ψ
Proof
Step
Hyp
Ref
Expression
1
cbval2v.1
⊢ Ⅎ z φ
2
cbval2v.2
⊢ Ⅎ w φ
3
cbval2v.3
⊢ Ⅎ x ψ
4
cbval2v.4
⊢ Ⅎ y ψ
5
cbval2v.5
⊢ x = z ∧ y = w → φ ↔ ψ
6
1
nfn
⊢ Ⅎ z ¬ φ
7
2
nfn
⊢ Ⅎ w ¬ φ
8
3
nfn
⊢ Ⅎ x ¬ ψ
9
4
nfn
⊢ Ⅎ y ¬ ψ
10
5
notbid
⊢ x = z ∧ y = w → ¬ φ ↔ ¬ ψ
11
6 7 8 9 10
cbval2v
⊢ ∀ x ∀ y ¬ φ ↔ ∀ z ∀ w ¬ ψ
12
2nexaln
⊢ ¬ ∃ x ∃ y φ ↔ ∀ x ∀ y ¬ φ
13
2nexaln
⊢ ¬ ∃ z ∃ w ψ ↔ ∀ z ∀ w ¬ ψ
14
11 12 13
3bitr4i
⊢ ¬ ∃ x ∃ y φ ↔ ¬ ∃ z ∃ w ψ
15
14
con4bii
⊢ ∃ x ∃ y φ ↔ ∃ z ∃ w ψ