This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
cbvcsbv
Metamath Proof Explorer
Description: Change the bound variable of a proper substitution into a class using
implicit substitution. (Contributed by NM , 30-Sep-2008) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypothesis
cbvcsbv.1
⊢ x = y → B = C
Assertion
cbvcsbv
⊢ ⦋ A / x ⦌ B = ⦋ A / y ⦌ C
Proof
Step
Hyp
Ref
Expression
1
cbvcsbv.1
⊢ x = y → B = C
2
1
eleq2d
⊢ x = y → z ∈ B ↔ z ∈ C
3
2
cbvsbcvw
⊢ [ ˙ A / x ] ˙ z ∈ B ↔ [ ˙ A / y ] ˙ z ∈ C
4
3
abbii
⊢ z | [ ˙ A / x ] ˙ z ∈ B = z | [ ˙ A / y ] ˙ z ∈ C
5
df-csb
⊢ ⦋ A / x ⦌ B = z | [ ˙ A / x ] ˙ z ∈ B
6
df-csb
⊢ ⦋ A / y ⦌ C = z | [ ˙ A / y ] ˙ z ∈ C
7
4 5 6
3eqtr4i
⊢ ⦋ A / x ⦌ B = ⦋ A / y ⦌ C