This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A category structure is a structure. (Contributed by Mario Carneiro, 3-Jan-2017)
|
|
Ref |
Expression |
|
Assertion |
catstr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|
| 2 |
|
basendx |
|
| 3 |
|
4nn0 |
|
| 4 |
|
1nn0 |
|
| 5 |
|
1lt10 |
|
| 6 |
1 3 4 5
|
declti |
|
| 7 |
|
4nn |
|
| 8 |
4 7
|
decnncl |
|
| 9 |
|
homndx |
|
| 10 |
|
5nn |
|
| 11 |
|
4lt5 |
|
| 12 |
4 3 10 11
|
declt |
|
| 13 |
4 10
|
decnncl |
|
| 14 |
|
ccondx |
|
| 15 |
1 2 6 8 9 12 13 14
|
strle3 |
|