This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
cardf
Metamath Proof Explorer
Description: The cardinality function is a function with domain the well-orderable
sets. Assuming AC, this is the universe. (Contributed by Mario
Carneiro , 6-Jun-2013) (Revised by Mario Carneiro , 13-Sep-2013)
Ref
Expression
Assertion
cardf
⊢ card : V ⟶ On
Proof
Step
Hyp
Ref
Expression
1
cardf2
⊢ card : x | ∃ y ∈ On y ≈ x ⟶ On
2
1
fdmi
⊢ dom ⁡ card = x | ∃ y ∈ On y ≈ x
3
cardeqv
⊢ dom ⁡ card = V
4
2 3
eqtr3i
⊢ x | ∃ y ∈ On y ≈ x = V
5
4
feq2i
⊢ card : x | ∃ y ∈ On y ≈ x ⟶ On ↔ card : V ⟶ On
6
1 5
mpbi
⊢ card : V ⟶ On