This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem brlmic

Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmic R 𝑚 S R LMIso S

Proof

Step Hyp Ref Expression
1 df-lmic 𝑚 = LMIso -1 V 1 𝑜
2 lmimfn LMIso Fn LMod × LMod
3 1 2 brwitnlem R 𝑚 S R LMIso S