This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Complex Banach spaces
Definition and basic properties
bnnv
Metamath Proof Explorer
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM , 17-Mar-2007) Use bnnvc instead. (New usage is discouraged.)
Ref
Expression
Assertion
bnnv
⊢ U ∈ CBan → U ∈ NrmCVec
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ BaseSet ⁡ U = BaseSet ⁡ U
2
eqid
⊢ IndMet ⁡ U = IndMet ⁡ U
3
1 2
iscbn
⊢ U ∈ CBan ↔ U ∈ NrmCVec ∧ IndMet ⁡ U ∈ CMet ⁡ BaseSet ⁡ U
4
3
simplbi
⊢ U ∈ CBan → U ∈ NrmCVec