This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bncms

Description: A Banach space is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bncms W Ban W CMetSp

Proof

Step Hyp Ref Expression
1 eqid Scalar W = Scalar W
2 1 isbn W Ban W NrmVec W CMetSp Scalar W CMetSp
3 2 simp2bi W Ban W CMetSp