This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Metric space balls
blelrnps
Metamath Proof Explorer
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM , 2-Sep-2006) (Revised by Mario Carneiro , 12-Nov-2013) (Revised by Thierry Arnoux , 11-Mar-2018)
Ref
Expression
Assertion
blelrnps
⊢ D ∈ PsMet ⁡ X ∧ P ∈ X ∧ R ∈ ℝ * → P ball ⁡ D R ∈ ran ⁡ ball ⁡ D
Proof
Step
Hyp
Ref
Expression
1
blfps
⊢ D ∈ PsMet ⁡ X → ball ⁡ D : X × ℝ * ⟶ 𝒫 X
2
1
ffnd
⊢ D ∈ PsMet ⁡ X → ball ⁡ D Fn X × ℝ *
3
fnovrn
⊢ ball ⁡ D Fn X × ℝ * ∧ P ∈ X ∧ R ∈ ℝ * → P ball ⁡ D R ∈ ran ⁡ ball ⁡ D
4
2 3
syl3an1
⊢ D ∈ PsMet ⁡ X ∧ P ∈ X ∧ R ∈ ℝ * → P ball ⁡ D R ∈ ran ⁡ ball ⁡ D