This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Metric space balls
blcntrps
Metamath Proof Explorer
Description: A ball contains its center. (Contributed by NM , 2-Sep-2006) (Revised by Mario Carneiro , 12-Nov-2013) (Revised by Thierry Arnoux , 11-Mar-2018)
Ref
Expression
Assertion
blcntrps
⊢ D ∈ PsMet ⁡ X ∧ P ∈ X ∧ R ∈ ℝ + → P ∈ P ball ⁡ D R
Proof
Step
Hyp
Ref
Expression
1
rpxr
⊢ R ∈ ℝ + → R ∈ ℝ *
2
rpgt0
⊢ R ∈ ℝ + → 0 < R
3
1 2
jca
⊢ R ∈ ℝ + → R ∈ ℝ * ∧ 0 < R
4
xblcntrps
⊢ D ∈ PsMet ⁡ X ∧ P ∈ X ∧ R ∈ ℝ * ∧ 0 < R → P ∈ P ball ⁡ D R
5
3 4
syl3an3
⊢ D ∈ PsMet ⁡ X ∧ P ∈ X ∧ R ∈ ℝ + → P ∈ P ball ⁡ D R