This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bj-modalb

Description: A short form of the axiom B of modal logic using only primitive symbols ( -> , -. , A. ). (Contributed by BJ, 4-Apr-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-modalb ¬ φ x ¬ x φ

Proof

Step Hyp Ref Expression
1 axc7 ¬ x ¬ x φ φ
2 1 con1i ¬ φ x ¬ x φ