This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem axc16

Description: Proof of older axiom ax-c16 . (Contributed by NM, 8-Nov-2006) (Revised by NM, 22-Sep-2017)

Ref Expression
Assertion axc16 x x = y φ x φ

Proof

Step Hyp Ref Expression
1 axc16g x x = y φ x φ