This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
ax12ev2
Metamath Proof Explorer
Description: Version of ax12v2 rewritten to use an existential quantifier. One
direction of sbalex without the universal quantifier, avoiding
ax-10 . (Contributed by SN , 14-Aug-2025)
Ref
Expression
Assertion
ax12ev2
⊢ ∃ x x = y ∧ φ → x = y → φ
Proof
Step
Hyp
Ref
Expression
1
exnalimn
⊢ ∃ x x = y ∧ φ ↔ ¬ ∀ x x = y → ¬ φ
2
ax12v2
⊢ x = y → ¬ φ → ∀ x x = y → ¬ φ
3
2
con1d
⊢ x = y → ¬ ∀ x x = y → ¬ φ → φ
4
1 3
biimtrid
⊢ x = y → ∃ x x = y ∧ φ → φ
5
4
com12
⊢ ∃ x x = y ∧ φ → x = y → φ