This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem atancl

Description: Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atancl A dom arctan arctan A

Proof

Step Hyp Ref Expression
1 atanf arctan : i i
2 1 ffvelcdmi A i i arctan A
3 1 fdmi dom arctan = i i
4 2 3 eleq2s A dom arctan arctan A