This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem anabss1

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 31-Dec-2012)

Ref Expression
Hypothesis anabss1.1 φ ψ φ χ
Assertion anabss1 φ ψ χ

Proof

Step Hyp Ref Expression
1 anabss1.1 φ ψ φ χ
2 1 an32s φ φ ψ χ
3 2 anabsan φ ψ χ