This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem alrot4

Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Assertion alrot4 x y z w φ z w x y φ

Proof

Step Hyp Ref Expression
1 alrot3 y z w φ z w y φ
2 1 albii x y z w φ x z w y φ
3 alrot3 x z w y φ z w x y φ
4 2 3 bitri x y z w φ z w x y φ