This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
addcnsrec
Metamath Proof Explorer
Description: Technical trick to permit re-use of some equivalence class lemmas for
operation laws. See dfcnqs and mulcnsrec . (Contributed by NM , 13-Aug-1995) (New usage is discouraged.)
Ref
Expression
Assertion
addcnsrec
⊢ A ∈ 𝑹 ∧ B ∈ 𝑹 ∧ C ∈ 𝑹 ∧ D ∈ 𝑹 → A B E -1 + C D E -1 = A + 𝑹 C B + 𝑹 D E -1
Proof
Step
Hyp
Ref
Expression
1
addcnsr
⊢ A ∈ 𝑹 ∧ B ∈ 𝑹 ∧ C ∈ 𝑹 ∧ D ∈ 𝑹 → A B + C D = A + 𝑹 C B + 𝑹 D
2
opex
⊢ A B ∈ V
3
2
ecid
⊢ A B E -1 = A B
4
opex
⊢ C D ∈ V
5
4
ecid
⊢ C D E -1 = C D
6
3 5
oveq12i
⊢ A B E -1 + C D E -1 = A B + C D
7
opex
⊢ A + 𝑹 C B + 𝑹 D ∈ V
8
7
ecid
⊢ A + 𝑹 C B + 𝑹 D E -1 = A + 𝑹 C B + 𝑹 D
9
1 6 8
3eqtr4g
⊢ A ∈ 𝑹 ∧ B ∈ 𝑹 ∧ C ∈ 𝑹 ∧ D ∈ 𝑹 → A B E -1 + C D E -1 = A + 𝑹 C B + 𝑹 D E -1