This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac6c5
Metamath Proof Explorer
Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of
nonempty sets. Remark after Theorem 10.46 of TakeutiZaring p. 98.
(Contributed by Mario Carneiro , 22-Mar-2013)
Ref
Expression
Hypotheses
ac6c4.1
⊢ A ∈ V
ac6c4.2
⊢ B ∈ V
Assertion
ac6c5
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f ∀ x ∈ A f ⁡ x ∈ B
Proof
Step
Hyp
Ref
Expression
1
ac6c4.1
⊢ A ∈ V
2
ac6c4.2
⊢ B ∈ V
3
1 2
ac6c4
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B
4
exsimpr
⊢ ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B → ∃ f ∀ x ∈ A f ⁡ x ∈ B
5
3 4
syl
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f ∀ x ∈ A f ⁡ x ∈ B