This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem absled

Description: Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φ A
absltd.2 φ B
Assertion absled φ A B B A A B

Proof

Step Hyp Ref Expression
1 absltd.1 φ A
2 absltd.2 φ B
3 absle A B A B B A A B
4 1 2 3 syl2anc φ A B B A A B