This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem abscn2

Description: The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Assertion abscn2 A x + y + z z A < y z A < x

Proof

Step Hyp Ref Expression
1 absf abs :
2 ax-resscn
3 fss abs : abs :
4 1 2 3 mp2an abs :
5 abs2difabs z A z A z A
6 4 5 cn1lem A x + y + z z A < y z A < x