This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem abs3difd

Description: Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
abssubd.2 φ B
abs3difd.3 φ C
Assertion abs3difd φ A B A C + C B

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abssubd.2 φ B
3 abs3difd.3 φ C
4 abs3dif A B C A B A C + C B
5 1 2 3 4 syl3anc φ A B A C + C B