This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 3onn

Description: The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion 3onn 3 𝑜 ω

Proof

Step Hyp Ref Expression
1 df-3o 3 𝑜 = suc 2 𝑜
2 2onn 2 𝑜 ω
3 peano2 2 𝑜 ω suc 2 𝑜 ω
4 2 3 ax-mp suc 2 𝑜 ω
5 1 4 eqeltri 3 𝑜 ω