This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 3adantr2

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005)

Ref Expression
Hypothesis 3adantr.1 φ ψ χ θ
Assertion 3adantr2 φ ψ τ χ θ

Proof

Step Hyp Ref Expression
1 3adantr.1 φ ψ χ θ
2 3simpb ψ τ χ ψ χ
3 2 1 sylan2 φ ψ τ χ θ