This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Conventional Metamath proofs, some derived from VD proofs
2uasban
Metamath Proof Explorer
Description: Distribute the unabbreviated form of proper substitution in and out of a
conjunction. (Contributed by Alan Sare , 31-May-2014)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
2uasban
⊢ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ψ ↔ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ∃ x ∃ y x = u ∧ y = v ∧ ψ
Proof
Step
Hyp
Ref
Expression
1
biid
⊢ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ∃ x ∃ y x = u ∧ y = v ∧ ψ ↔ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ∃ x ∃ y x = u ∧ y = v ∧ ψ
2
1
2uasbanh
⊢ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ψ ↔ ∃ x ∃ y x = u ∧ y = v ∧ φ ∧ ∃ x ∃ y x = u ∧ y = v ∧ ψ