This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
2reurmo
Metamath Proof Explorer
Description: Double restricted quantification with restricted existential uniqueness
and restricted "at most one", analogous to 2eumo . (Contributed by Alexander van der Vekens , 24-Jun-2017)
Ref
Expression
Assertion
2reurmo
⊢ ∃! x ∈ A ∃ * y ∈ B φ → ∃ * x ∈ A ∃! y ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
reuimrmo
⊢ ∀ x ∈ A ∃! y ∈ B φ → ∃ * y ∈ B φ → ∃! x ∈ A ∃ * y ∈ B φ → ∃ * x ∈ A ∃! y ∈ B φ
2
reurmo
⊢ ∃! y ∈ B φ → ∃ * y ∈ B φ
3
2
a1i
⊢ x ∈ A → ∃! y ∈ B φ → ∃ * y ∈ B φ
4
1 3
mprg
⊢ ∃! x ∈ A ∃ * y ∈ B φ → ∃ * x ∈ A ∃! y ∈ B φ