This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
2ralbidva
Metamath Proof Explorer
Description: Formula-building rule for restricted universal quantifiers (deduction
form). (Contributed by NM , 4-Mar-1997) Reduce dependencies on axioms.
(Revised by Wolf Lammen , 9-Dec-2019)
Ref
Expression
Hypothesis
2ralbidva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ ↔ χ
Assertion
2ralbidva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ ↔ ∀ x ∈ A ∀ y ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
2ralbidva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ ↔ χ
2
1
anassrs
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ ↔ χ
3
2
ralbidva
⊢ φ ∧ x ∈ A → ∀ y ∈ B ψ ↔ ∀ y ∈ B χ
4
3
ralbidva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ ↔ ∀ x ∈ A ∀ y ∈ B χ