This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
2exeuv
Metamath Proof Explorer
Description: Double existential uniqueness implies double unique existential
quantification. Version of 2exeu with x and y distinct, but
not requiring ax-13 . (Contributed by NM , 3-Dec-2001) (Revised by Wolf Lammen , 2-Oct-2023)
Ref
Expression
Assertion
2exeuv
⊢ ∃! x ∃ y φ ∧ ∃! y ∃ x φ → ∃! x ∃! y φ
Proof
Step
Hyp
Ref
Expression
1
eumo
⊢ ∃! x ∃ y φ → ∃ * x ∃ y φ
2
euex
⊢ ∃! y φ → ∃ y φ
3
2
moimi
⊢ ∃ * x ∃ y φ → ∃ * x ∃! y φ
4
1 3
syl
⊢ ∃! x ∃ y φ → ∃ * x ∃! y φ
5
2euexv
⊢ ∃! y ∃ x φ → ∃ x ∃! y φ
6
4 5
anim12ci
⊢ ∃! x ∃ y φ ∧ ∃! y ∃ x φ → ∃ x ∃! y φ ∧ ∃ * x ∃! y φ
7
df-eu
⊢ ∃! x ∃! y φ ↔ ∃ x ∃! y φ ∧ ∃ * x ∃! y φ
8
6 7
sylibr
⊢ ∃! x ∃ y φ ∧ ∃! y ∃ x φ → ∃! x ∃! y φ