This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Uniqueness and unique existence
Unique existence: the unique existential quantifier
2euswapv
Metamath Proof Explorer
Description: A condition allowing to swap an existential quantifier and a unique
existential quantifier. Version of 2euswap with a disjoint variable
condition, which does not require ax-13 . (Contributed by NM , 10-Apr-2004) (Revised by GG , 22-Aug-2023)
Ref
Expression
Assertion
2euswapv
⊢ ∀ x ∃ * y φ → ∃! x ∃ y φ → ∃! y ∃ x φ
Proof
Step
Hyp
Ref
Expression
1
excomim
⊢ ∃ x ∃ y φ → ∃ y ∃ x φ
2
1
a1i
⊢ ∀ x ∃ * y φ → ∃ x ∃ y φ → ∃ y ∃ x φ
3
2moswapv
⊢ ∀ x ∃ * y φ → ∃ * x ∃ y φ → ∃ * y ∃ x φ
4
2 3
anim12d
⊢ ∀ x ∃ * y φ → ∃ x ∃ y φ ∧ ∃ * x ∃ y φ → ∃ y ∃ x φ ∧ ∃ * y ∃ x φ
5
df-eu
⊢ ∃! x ∃ y φ ↔ ∃ x ∃ y φ ∧ ∃ * x ∃ y φ
6
df-eu
⊢ ∃! y ∃ x φ ↔ ∃ y ∃ x φ ∧ ∃ * y ∃ x φ
7
4 5 6
3imtr4g
⊢ ∀ x ∃ * y φ → ∃! x ∃ y φ → ∃! y ∃ x φ