This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 2alimi

Description: Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005)

Ref Expression
Hypothesis alimi.1 φ ψ
Assertion 2alimi x y φ x y ψ

Proof

Step Hyp Ref Expression
1 alimi.1 φ ψ
2 1 alimi y φ y ψ
3 2 alimi x y φ x y ψ