This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Lemma 2 for 1pthd . (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
1wlkd.p |
|
|
|
1wlkd.f |
|
|
Assertion |
1pthdlem2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1wlkd.p |
|
| 2 |
|
1wlkd.f |
|
| 3 |
2
|
fveq2i |
|
| 4 |
|
s1len |
|
| 5 |
3 4
|
eqtri |
|
| 6 |
5
|
oveq2i |
|
| 7 |
|
fzo0 |
|
| 8 |
6 7
|
eqtri |
|
| 9 |
8
|
imaeq2i |
|
| 10 |
9
|
ineq2i |
|
| 11 |
|
ima0 |
|
| 12 |
11
|
ineq2i |
|
| 13 |
|
in0 |
|
| 14 |
12 13
|
eqtri |
|
| 15 |
10 14
|
eqtri |
|