This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 1cosscnvepresex

Description: Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion 1cosscnvepresex A V E -1 A V

Proof

Step Hyp Ref Expression
1 cnvepresex A V E -1 A V
2 cossex E -1 A V E -1 A V
3 1 2 syl A V E -1 A V