This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 19.42vv

Description: Version of 19.42 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995)

Ref Expression
Assertion 19.42vv x y φ ψ φ x y ψ

Proof

Step Hyp Ref Expression
1 exdistr x y φ ψ x φ y ψ
2 19.42v x φ y ψ φ x y ψ
3 1 2 bitri x y φ ψ φ x y ψ