This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Lemma for 0funcg . (Contributed by Zhi Wang, 17-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
0funcglem.1 |
|
|
|
0funcglem.2 |
|
|
|
0funcglem.3 |
|
|
|
0funcglem.4 |
|
|
Assertion |
0funcglem |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0funcglem.1 |
|
| 2 |
|
0funcglem.2 |
|
| 3 |
|
0funcglem.3 |
|
| 4 |
|
0funcglem.4 |
|
| 5 |
|
df-3an |
|
| 6 |
1 5
|
bitrdi |
|
| 7 |
4 6
|
mpbiran2d |
|
| 8 |
2 3
|
anbi12d |
|
| 9 |
7 8
|
bitrd |
|