This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zob | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
|
| 2 | peano2z | |- ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) + 1 ) e. ZZ ) |
|
| 3 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 4 | 3 | zcnd | |- ( N e. ZZ -> ( N + 1 ) e. CC ) |
| 5 | 4 | halfcld | |- ( N e. ZZ -> ( ( N + 1 ) / 2 ) e. CC ) |
| 6 | npcan1 | |- ( ( ( N + 1 ) / 2 ) e. CC -> ( ( ( ( N + 1 ) / 2 ) - 1 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
|
| 7 | 5 6 | syl | |- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
| 8 | 7 | eqcomd | |- ( N e. ZZ -> ( ( N + 1 ) / 2 ) = ( ( ( ( N + 1 ) / 2 ) - 1 ) + 1 ) ) |
| 9 | 8 | eleq1d | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( ( ( N + 1 ) / 2 ) - 1 ) + 1 ) e. ZZ ) ) |
| 10 | 2 9 | imbitrrid | |- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 11 | 1 10 | impbid2 | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) ) |
| 12 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 13 | xp1d2m1eqxm1d2 | |- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
|
| 14 | 12 13 | syl | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 15 | 14 | eleq1d | |- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 16 | 11 15 | bitrd | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |