This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xptrrel | |- ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | |- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ dom ( A X. B ) |
|
| 2 | dmxpss | |- dom ( A X. B ) C_ A |
|
| 3 | 1 2 | sstri | |- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ A |
| 4 | inss2 | |- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ ran ( A X. B ) |
|
| 5 | rnxpss | |- ran ( A X. B ) C_ B |
|
| 6 | 4 5 | sstri | |- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ B |
| 7 | 3 6 | ssini | |- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ ( A i^i B ) |
| 8 | eqimss | |- ( ( A i^i B ) = (/) -> ( A i^i B ) C_ (/) ) |
|
| 9 | 7 8 | sstrid | |- ( ( A i^i B ) = (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ (/) ) |
| 10 | ss0 | |- ( ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) = (/) ) |
|
| 11 | 9 10 | syl | |- ( ( A i^i B ) = (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) = (/) ) |
| 12 | 11 | coemptyd | |- ( ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) = (/) ) |
| 13 | 0ss | |- (/) C_ ( A X. B ) |
|
| 14 | 12 13 | eqsstrdi | |- ( ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) ) |
| 15 | neqne | |- ( -. ( A i^i B ) = (/) -> ( A i^i B ) =/= (/) ) |
|
| 16 | 15 | xpcoidgend | |- ( -. ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) = ( A X. B ) ) |
| 17 | ssid | |- ( A X. B ) C_ ( A X. B ) |
|
| 18 | 16 17 | eqsstrdi | |- ( -. ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) ) |
| 19 | 14 18 | pm2.61i | |- ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) |