This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mscl.x | |- X = ( Base ` M ) |
|
| mscl.d | |- D = ( dist ` M ) |
||
| Assertion | xmstri3 | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) +e ( B D C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | |- X = ( Base ` M ) |
|
| 2 | mscl.d | |- D = ( dist ` M ) |
|
| 3 | 1 2 | xmsxmet2 | |- ( M e. *MetSp -> ( D |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 4 | xmettri3 | |- ( ( ( D |` ( X X. X ) ) e. ( *Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( A ( D |` ( X X. X ) ) C ) +e ( B ( D |` ( X X. X ) ) C ) ) ) |
|
| 5 | 3 4 | sylan | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) <_ ( ( A ( D |` ( X X. X ) ) C ) +e ( B ( D |` ( X X. X ) ) C ) ) ) |
| 6 | simpr1 | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 7 | simpr2 | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 8 | 6 7 | ovresd | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
| 9 | simpr3 | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) |
|
| 10 | 6 9 | ovresd | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A ( D |` ( X X. X ) ) C ) = ( A D C ) ) |
| 11 | 7 9 | ovresd | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B ( D |` ( X X. X ) ) C ) = ( B D C ) ) |
| 12 | 10 11 | oveq12d | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( D |` ( X X. X ) ) C ) +e ( B ( D |` ( X X. X ) ) C ) ) = ( ( A D C ) +e ( B D C ) ) ) |
| 13 | 5 8 12 | 3brtr3d | |- ( ( M e. *MetSp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) +e ( B D C ) ) ) |